Math 206A Lecture 25 Notes

Daniel Raban

November 28, 2018

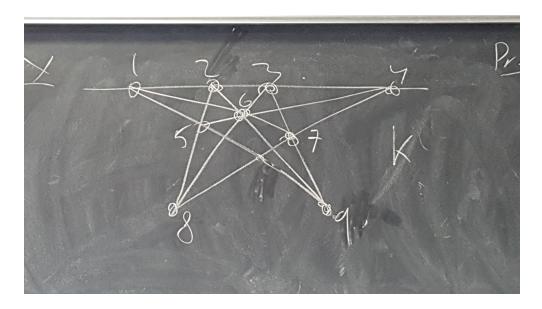
1 Irrational Point and Line Configurations, and Lawrence's Construction

1.1 Irrational point and line confingurations

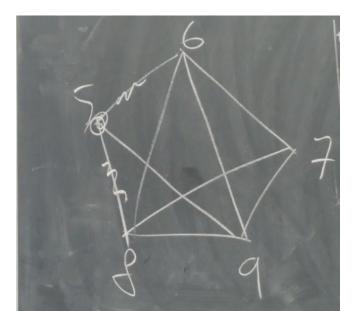
Theorem 1.1 (Perles, 1970s). There exists d > 3 and a convex polytope $P \subseteq \mathbb{R}^d$ such that for all $P \subseteq \mathbb{Q}^d$, $\alpha(P) \neq \alpha(P')$.

Theorem 1.2. There exists a point and line configuration K = (V, L) realizable over \mathbb{R} but not over \mathbb{Q} .

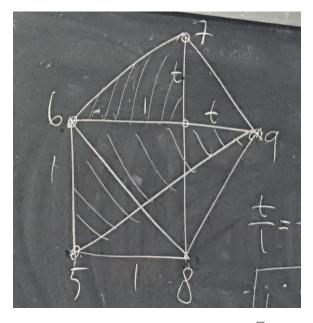
Example 1.1. Here is an actual example. Start with the configuration



Send the line passing through 1, 2, 3, 4 to ∞ . We get the following picture,



where 56 || 78, 69 || 58, 59 || 67, and 58 || 69. Specifically, we set the edge lengths as follows:



From similar triangles, we get t/1 = 1/(1+t). So $t = (\sqrt{5}-1)/2$.

1.2 Lawrence's construction

Theorem 1.3 (Lawrence). Let K = (V, L) be irrational with |V| = n. Then there exists a convex polytope $P \subseteq \mathbb{R}^d$ with d = n + 3 and 2n vertices such that P is irrational.

Proof. Let $f: V \to \mathbb{R}^2$ be a realization of K. Let $w = (f(v_i), 1) \in \mathbb{R}^3$. Consider the 2n points $x_i = (w_i, e_i), y_i = (w_i, we_i)\mathbb{R}^{3+n}$, where $\mathbb{R}^n = \langle e_1, \ldots, e_n \rangle$. Now let $P = \operatorname{conv}(\{x_i, y_i : i = 1, \ldots, n\})$. Then P has all x_i, y_i as vertices. P is irrational.

To show that P is irrational, suppose that $\sum_{i=1}^{n} \alpha_i x_i + \beta_i y_i = 0$. Then $\alpha_i = -2\beta_i$ for all i. Then $\sum_{i=1}^{n} (-2\beta_i)w_i + (\beta_i)w_i = 0$, so $\sum_{i=1}^{n} \beta_i w_i = 0$. If some of the w_i lie on a line, then we get such a linear relation. Then P has some 5-dimensional faces (containing $x_i, y_i, x_j, y_j, x_k, y_k$), not just 6-dimensional faces. Then v_i, v_j, v_k lie on the same line. \Box

1.3 Constructing regular *n*-gons

Gauss was interested in the following question: For which n does there exist a ruler and compass construction of the regular n-gon?

Theorem 1.4 (Gauss). If n = 7, there is no ruler and compass construction of the regular *n*-gon.

Theorem 1.5 (Gauss). If n = 17, there is a ruler and compass construction of the regular *n*-gon.